

BRAHMAPUTRA CRACKER & POLYMER LIMITED QUALITY CIRCLE PROJECT REGISTRATION

WORK CENTER: BCPL OFFSITE AND STORAGE

1.	Project Registration No.	BCPL/LEPK/MECH/OFFSITE/QC/2018-19/01
2.	QC Team Name	LAKSHYA
3.	a. Team Leader	PRODIP KUMAR SHOME
	b. Team Members	1) DEEP SHANKAR GOGOI, Mgr Mechanical.
		2) SUMANTA SHARMA, Technician , Mechanical.
		3) ADITYA TAMULI, Technician , Mechanical.
		4) RUPANKA GOGOI, Technician , Mechanical.
		5) DHANANJAY NATH, Technician, Mechanical.
4.	Champion	SRI MAHIM KONWAR , DGM (MECHANICAL)
	HOD	SRI RAJPAL SINGH, GM(PE)
5.	Project Title (Should be Specific, Measurable, Achievable, Realistic, Time Bound)	TO REDUCE REPETATIVE BREAKDOWN IN HPG TRANSFER PUMP 144-PA-12 B.
6.	Potential Benefits: Tangible	Reduction of downtime and maintenance spare consumption in HPG transfer pump 144-PA-12 B.
7.	Target Completion Date	22.02.2019
	(Plan the activities in milestone chart below)	

Mart all fill forman

Milestone Chart

No	Activity Days	Week -1	Week -2	Week -3	Week -4	Target
1.	Defining the problem					
2.	Analyzing the problem					
3.	Identifying the causes					
4.	Finding out the root causes					
5.	Data Analysis					
6.	Developing solution					
7.	Foreseeing possible resistance					
8.	Trial implementation and checking performance					
9.	Regular implementation					
10.	Follow up/Review					

BRAHMAPUTRA CRACKER & POLYMER LIMITED

Continue and a continue

Team Leader

QUALITY CIRCLE PROJECTS: STATUS REPORT

WORK CENTER: BCPL OFFSITE AND STORAGE

1	QC Registration No.	BCPL/LEPK/MECH/OFFSITE/QC/2018-19/01
2.	QC Team Name	LAKSHYA
3	a. Team Leader	PRODIP KUMAR SHOME
•	b. Team	1) DEEP SHANKAR GOGOI, Mgr Mechanical.
	Members	2) SUMANTA SHARMA, Technician, Mechanical.
		3) ADITYA TAMULI, Technician, Mechanical.
		4) RUPANKA GOGOI, Technician, Mechanical.
		5) DHANANJAY NATH, Technician, Mechanical.
4	Champion/HO D	SRI MAHIM KONWAR , DGM (MECHANICAL)/ SRI RAJPAL SINGH, GM(PE)
5.	Improvement Project	Project Title : TO REDUCE REPETATIVE BREAKDOWN IN HPG TRANSFER PUMP 144-PA-12 B
		Introduction: Two nos. of HPG transfer Pumps(144-PA-12 A/B) are installed in Offsite area. HPG Pumps used for transferring HPG from storage tanks to loading gantry. All these pumps are in operation and running with working fluid. The HPG transfer pumps are very critical from operation point of view as this pump is used for loading the HPG tankers which is sold outside and also to maintain the stock level in the storage tanks.
		Defining the problem: Equipment history record of HPG loading Pump

are at fire parmer

144-PA-12 B was referred and found that frequency of change of carbon bearing, thrust washer and impeller was observed against the other HPG loading pump 144-PA-12 A. So repeated failure of pump has resulted in the consumption of spares and downtime. These pumps are canned motor pump and impeller is fitted in the rotor assembly and the rotor assembly is placed inside the stator so no coupling is available between pump and motor. The working fluid is the lubricating media of the bearings and other rotating parts . Looking at the history of the pump it is seen that the carbon bearings, thrust washer and impeller got damage several time . It is also seen that sometime impeller gets so much clearance that it tend to touch the casing. Hence based on the facts and observation "**REDUCTION OF REPETATIVE BREAKDOWN IN HPG TRANSFER PUMP 144-PA-12 B**" is selected as problem.

Analyzing the problem:

4W1HMethod

What	Reduction of downtime in HPG
	loading pump.
Where	Offsite and HPG Storage pump area.
When	During Loading of HPG into the Tanker.
Who	Offsite Loading and unloading person.
How	Will be analyzed in step -4 (root cause analysis)

MAN (

Material 🗴

Team Leader

Mach		IPG Pump 1/2B Method X	Envir	•onment X	ated
SL no	Man	Machine	Material	Method	Environmen
1	Training.	High Vibration.	Impurities in HPG like solids.	No priming	High Temperature of HPG during summer.
2	No Skill.	High temperature in carbon bush.	Not using standard spares.	Pump running in cavitation.	
3		High ampere (more than 52 amps) during loading.	Less HPG flow into the pump.		
4		Reverse rotation o rotor assembly.			
5	+	High Stator winding			

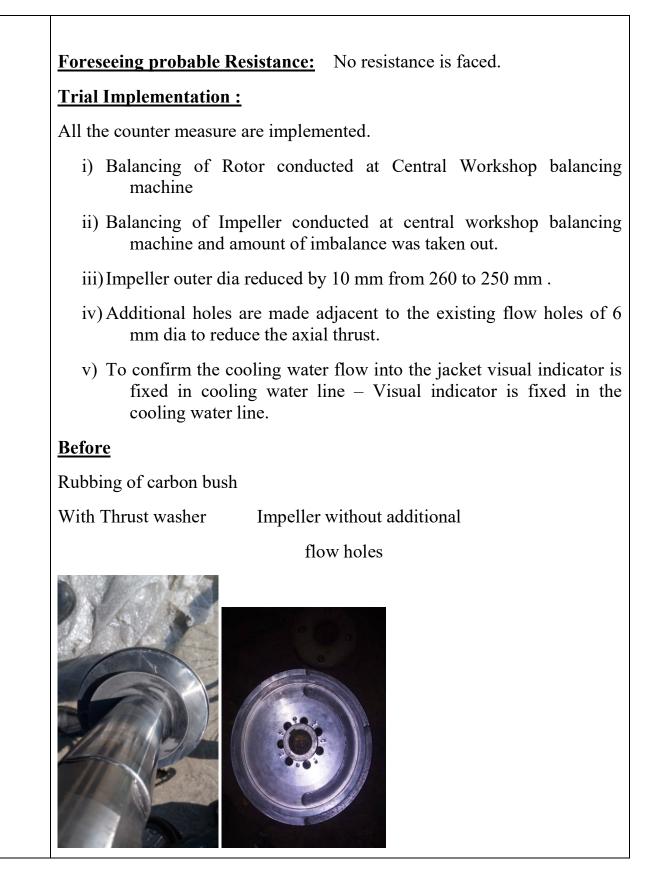
6 <u>Fin</u>	ding out the	Pump Trip starting of p due to low ampere(les than 10 amp	oump s os)		
No	Cause	Why 1	Why 2	Why 3	Root cause
1	High Vibration	Vibration in rotor assembly	Damage bearing	Clearance between sleeve and bearing increase.	Unbalance impeller.
2	High temperature in Carbon bush	Carbon bush rubbing with thrust washer.	Axial movement of the shaft is more than 1.15mm	Un balance of impeller and rotor assembly also High axial thrust in forward direction.	Un balance of impeller , rotor assembly and High axial thrust in forward direction
3	Reverse rotation of the rotor assembly.	Wrong electrical connection			No Marking in the terminal.
4	Pump Trip at starting due to low ampere(less than 10 amps)	No load at the pump	Cavitations	No/ Less priming.	No/ Less priming.

5	High Stator winding temperature	No cooling	Cooling jacket damage or clogged/ no cooling water	No maintenance of cooling jacket/ cooling water valve closed.	No maintenance of cooling jacket.
6	High ampere (more than 52 amps) during loading	Rubbing between bushing and thrust washer/ impeller rubbing the casing wear ring.	Axial Float exceeded more than 1.15 mm/Carbon bush worn out.	Carbon bush rubs with the thrust washer.	Carbon bush rubs with the thrust washer
7	Less HPG flow into the pump.	Inlet Valve Closed./ Priming not done/ Tank level Low	Manual operation of valve/ Pump Venting line chocked header.		No venting is done at pump before starting.
8	Impurities in HPG, like solids particles etc.	In line Strainer problem.			Strainer broken.
9	Training.				Training Schedule
Da	<u>ta Analysis</u> :				

SL no	Causes	Frequency	Cumulative Frequency	Cumulative Frequency
				percentage
1	High ampere drawn during discharge.	20	20	
2	High temperature in carbon bush.	13	33	
3	High Vibration	8	41	
4	High Stator winding temperature.	5	46	
5	Reverse rotation of rotor assembly	4	50	
6	Pump Trip at starting .	3	53	
7	Impurities in HPG like solids particles.	2	55	

8	Less HPG flow into the pump.	1	56		
9	Lack of Training	0	56		_
10	No training given and also SOPs are not displayed.	0	56		
11	No priming done	0			
Pare 25 20 15 10 10 10		riva ^{3, sating} . ROOT CA	Notio	120% 100% 80% 60% 40% 20% 0%	

Developing	Solution:
-------------------	-----------


From the PARETO Chart it is clear that "High Ampere Drawn during Discharge" and

"High temperature in carbon bush " are the Vital Few while the rest are Useful ManyBrainstorming Tool is used for deriving the counter measure of Root causes.

Root cause	Counter Measure
1.High ampere drawn during discharge.	1 .Balancing of Rotor assembly.
2.High temperature in Carbon bush.	2 . Balancing of Impeller.
	3. Making additional flow holes of 6 mm to re
	thrust washer which generate heat and flow o
	lubrication in carbon bushing.
	4. Trimming the impeller as per data sheet
	by 10 mm.
	5.To confirm the cooling water flow into
	the jacket, visual indicator is fixed in
	cooling water line.

SITE OF FRE

Final impeller dia 250 mm

Balancing report attact CERT NO: BCPL/CWS/2019/201	<u>hed.</u>	<image/> <image/>
		DETAILS:
UNIT	:	OFFSITE
EQUIPMENT DESCRIPTIO		SPARE ROTOR ASSEMBLY PELLER-1) OF HPG LOADING PUMP
OPERATING SPEED	:	2900 RPM
WEIGHT	:	43.7 KG
	DETAILS	
BALANCING MACHINE I		
BALANCING MACHINE I MAKE: ABRO		DEL: HR 5K (SP)
	, МО	DEL: HR 5K (SP) ING DETAILS
	, МО	ING DETAILS
MAKE : ABRO TEST CODE	, МО <u>ВАLANCI</u> : ISO 194	ING DETAILS

-1 FATE (P 13

		OBSERVATION		
			LEFT PLANE	RIGHT PLANE
		INITIAL UNLABALANCE :	21.8 gm @ 39 Deg	14.5 gm @ 270 Deg
		FINAL RESIDUAL UNBALANCE:	1.5 gm @ 332 Deg	1 gm @ 196 Deg
		PERMISSIBLE RESIDUAL UNBALANCE AS PER ISO 1940 G 2.5	1.56 gm	2.76 gm
		REMARKS : Final residual unbalance limit as per ISO 1940G 2.5	(after correction) is wi	thin the acceptable
6	Target Date for completion	22.02.2019		
7	i) Potential Benefits ii)Tangible	iii)Reduction of repeated breakdown. iv)Reduction of spares consumption.		
•	v) Intangible	i) Equipment health improvement.		
		ii) Improvement of HSE.		
8.	Achievement Till Date	Regular implementation completed	and Follow up/Revie	ew under progress.
9	Implementation StatusImplemen ted(Yes/No)	Yes.		
	If No, reasons			

BRAHMAPUTRA CRACKER & POLYMER LIMITED Quality circles: Sharing the success story '18-19

1. Name of the	work center: OFFSITE AND STORAGE AREA, BCPL		
2. QC Team Na	me : LAKSHYA.		
3. Team Leader	: PRODIP KUMAR SHPOME		
Members	: 1) DEEP SHANKAR GOGOI, Mgr Mechanical.		
	2) SUMANTA SHARMA, Technician, Mechanical.		
	3) ADITYA TAMULI, Technician, Mechanical.		
	4) RUPANKA GOGOI, Technician, Mechanical.		
	5) DHANANJAY NATH, Technician, Mechanical		
4. Champion :	SHRI MAHIM KONWAR, DGM(PE)		
5. HOD :	SHRI RAJPAL SINGH, HoD(Mechanical)		
•	REDUCTION OF REPETATIVE BREAKDOWN IN HPG PUMP 144-PA-12 B		
7. Reason for selecting the project : REPEATED BREAKDOWN.			
8. Outcome of t	the project/suggested modification or improvement:		
OUTCOME O	F THE PROJECT:- UNBALACED AT IMPELLER RECTIFIED,		

OUTCOME OF THE PROJECT:- UNBALACED AT IMPELLER RECTIFIED, LESSER FLOW HOLES IN THE IMPELLER, MAXIMUM DIA IMPELLER FITTED.

SUGGESTED MODIFICATION : ADDITIONAL FLOW HOLES MADE IN THE IMPELLER, IMPELLER DIA TRIMMED BY 5 MM .BALANCING OF ROTOR AND IMPELLER DONE.

9. When from solutions/counter measures were implemented: 19-02-2019 TO 22-02-2019

10. Effectiveness of implementation: THE PUMP IS RUNNING AT 45 Amps LOAD, BUSH BEARING TEMPERATURE 33 DEG, VIBRATION 0.12 MM/SEC AND DISCHARGE PRESSURE 5 KG/CM2. PUMP RUNNING SUCESSFULLY.

11. Tangible benefits achieved: ROOT CAUSE OF REPEATED BREAKDOWN ARE IDENTIFIED AND SO BREAKDOWN REDUCED. O&M SPARE CONSUMPTION REDUCED.AVAILABILITY INCREASES

12. Intangible benefits achieved: WORKMAN MORALE IMPROVES.

13. Is there any opportunity of horizontal deployment in other departments or work center(s): YES IN HPG TRANSFER PUMP 144-PA-12 A.

Team Leader

Champion

<u>HoD</u>

Forwarded to: Total Quality management Group.

AT. FEE